If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=-16t^2+144t
We move all terms to the left:
20-(-16t^2+144t)=0
We get rid of parentheses
16t^2-144t+20=0
a = 16; b = -144; c = +20;
Δ = b2-4ac
Δ = -1442-4·16·20
Δ = 19456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19456}=\sqrt{1024*19}=\sqrt{1024}*\sqrt{19}=32\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-32\sqrt{19}}{2*16}=\frac{144-32\sqrt{19}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+32\sqrt{19}}{2*16}=\frac{144+32\sqrt{19}}{32} $
| -2(4+3)=-2(4+y) | | -3+10n=57 | | X=174+-2x | | 7(1+8n)=7+n | | 2x+x+5+x+x-10=360 | | -3n+1=-56 | | 2n+9=9+2n | | 5x-13=8x-40 | | -5x+46=26 | | (1-3g)=-7+g | | 6-2a=-28 | | 5x+71=8 | | x=6x+70 | | -7+n/2=-5 | | -8(x+1)=5x+44 | | 8+3.5=-7x+2 | | 3+6m=-105 | | X-5+2y=180 | | 4(1-3g)=-7+g | | -10-9p=-1 | | 3^9x=11^x+8 | | 3^9x=11^x | | 180=(8x+8)+(4x+13)+(13x+12) | | 8d=7d−6 | | -6+a/15=-7 | | 51=y4+ 45 | | (8x+8)+(4x+13)+(13x+12)=180 | | 6x+12+3x+30=90 | | 14−2m=12 | | 4s-6=5s | | -8(x+2)+3=5(x-7) | | -2+2v=4 |